MTH 310 HW 2 Solutions

Jan 29, 2016

Section 1.3, Question 7

Prove if $a, b, c \in \mathbb{Z}$ and p is a prime that divides a and $a+b c$, then $p \mid b$ or $p \mid c$.
Answer. Note that $p \mid a$, so there is an integer q with $a=p q$. Similarly as $p \mid(a+b c)$ then there is an integer k with $a+b c=p k$. Then we obtain $b c=a+b c-a=p k-p q=p(k-q)$, so $p \mid b c$. By Theorem 1.5 (Hungerford), since p is prime, $p \mid b$ or $p \mid c$.

Section 2.1, Problem 9b

Prove that if $n \in \mathbb{Z},(2 n-a)^{2} \equiv a^{2}(\bmod 4 n)$.
Answer. Note that $(2 n-a)^{2}=4 n^{2}-4 n a+a^{2}=4 n(n-a)+a^{2}$ and $a^{2}=0(4 n)+a^{2}$ so $(2 n-a)^{2} \equiv a^{2}(\bmod 4 n)$.

Section 2.2, Question 14c

Prove that if p is prime that the only solutions to $x^{2}+x=[0]$ in \mathbb{Z}_{p} are $[0]$ and $[\mathrm{p}-1]$.
Answer. Assume $x^{2}+x=[0]$ in \mathbb{Z}_{p}. Then we have $p \mid\left(x^{2}+x\right)$, so $p \mid(x(x+1))$. By Theorem 1.5 (Hungerford), since p is a prime that divides the product of two integers (namely, x and $\mathrm{x}+1$), either $p \mid x$ or $p \mid(x+1)$. If $p \mid x$, then $x=[0]$ in \mathbb{Z}_{p}. If $p \mid x+1$, Then there is an integer q with $x+1=p q$. Therefore $x=p q-1+p-p=p(q-1)+(p-1)$, so in $\mathbb{Z}_{p}, x=[p-1]$.

